Imparare a quantificare guardando Learning to quantify by watching

Sandro Pezzelle ${ }^{1}$, lonut Sorodoc ${ }^{2}$, Aurelie Herbelot ${ }^{1}$, and Raffaella Bernardi ${ }^{1}$

${ }^{1}$ University of Trento
${ }^{2}$ EMLCT
${ }^{1}$ \{ firstname.lastname\} @unitn. it
${ }^{2}$ ionut.sorodoc@gmail.com

CLiC-IT, Naples
December 5th 2016

Outline

(1) Overview

(2) Data

(3) Models

(4) Experiment
(5) Conclusions

Abstract

- Multimodal model quantifying over visual scenes using natural language quantifiers (no, few, some, most, all)

Abstract

- Multimodal model quantifying over visual scenes using natural language quantifiers (no, few, some, most, all)
- Visual Question Answering (VQA) task with genuine understanding of both linguistic and visual inputs

Task

Task

How many dogs are black? No/few/some/most/all?

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

- From ImageNet, pics labeled wrt object (dog) and properties (black)

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

- From ImageNet, pics labeled wrt object (dog) and properties (black)
- Filtering based on N properties, frequency of corresponding word

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

- From ImageNet, pics labeled wrt object (dog) and properties (black)
- Filtering based on N properties, frequency of corresponding word
- Selected 161 different objects (7324 images, 24 properties)

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

- From ImageNet, pics labeled wrt object (dog) and properties (black)
- Filtering based on N properties, frequency of corresponding word
- Selected 161 different objects (7324 images, 24 properties)
- Built synthetic (plausible) scenarios made up of 16 different images

Dataset

What is needed

Visual scenes containing multiple objects $\mathrm{w} /$ various properties

- From ImageNet, pics labeled wrt object (dog) and properties (black)
- Filtering based on N properties, frequency of corresponding word
- Selected 161 different objects (7324 images, 24 properties)
- Built synthetic (plausible) scenarios made up of 16 different images
- Built datapoints: <scenario, query, answer>

Materials

Visual features
 4096-d features extracted from fc7 of CNN (VGG-19 pretrained on Imagenet)

Materials

```
Visual features
4096-d features extracted from fc7 of CNN (VGG-19 pretrained on
Imagenet)
```

Word embeddings
400-d word2vec embeddings built with CBOW on 2.8B token corpus

Quantifier Memory Network (qMN) model

Quantifier Memory Network (qMN) model

Baseline
VQA state-of-art iBOWIMG (Zhou et al., 2015)

Experimental settings

Uncontrolled
10,000 datapoints randomly split in train (70\%), val (10\%), and test (20\%)

Experimental settings

Uncontrolled
10,000 datapoints randomly split in train (70\%), val (10\%), and test (20\%)

Unseen queries
7,000 datapoints selected for train, val and test w/ same scenarios and objects but unseen properties

Experimental settings

Uncontrolled
10,000 datapoints randomly split in train (70\%), val (10\%), and test (20\%)

Unseen queries
7,000 datapoints selected for train, val and test w/ same scenarios and objects but unseen properties

Unseen scenarios
7,000 datapoints selected for train, val and test w/ same objects and properties but unseen scenarios

Results

	Unseen queries		Unseen scenarios		Uncontrolled	
	qMN	iBOWIMG	qMN	iBOWIMG	qMN	iBOWIMG
	$\mathbf{4 3 . 0 8}$	25.8	32.62	$\mathbf{3 9 . 8 3}$	18.16	$\mathbf{2 2 . 1 3}$
all	$\mathbf{6 7 . 0 6}$	61.42	$\mathbf{5 0 . 5 1}$	34.1	$\mathbf{5 2 . 2 2}$	40.34
no	77.5	$\mathbf{9 6 . 5 2}$	$\mathbf{6 7 . 9 9}$	50.33	$\mathbf{5 9 . 7}$	49.5
few	$\mathbf{3 8 . 0 1}$	23.96	25.86	$\mathbf{2 6 . 8 4}$	$\mathbf{3 2 . 2 5}$	21.25
most	$\mathbf{4 6 . 9 7}$	25.27	$\mathbf{3 9 . 2 5}$	29.17	$\mathbf{3 2 . 1 4}$	20.4

Table: Percentage of target quantifiers correctly predicted by each model

Error analysis

qMN					
	some	all	no	few	most
some	73	$\underline{88}$	57	$\underline{89}$	$\underline{95}$
all	29	$\mathbf{2 1 1}$	20	19	$\underline{125}$
no	32	28	$\mathbf{2 4 0}$	70	32
few	46	53	$\underline{104}$	$\mathbf{1 2 9}$	68
most	49	$\underline{148}$	31	38	126
iBOWIMG					
some	all	no	few	most	
some	89	77	50	$\underline{108}$	78
all	45	$\mathbf{1 6 3}$	63	46	$\underline{87}$
no	30	69	$\mathbf{1 9 9}$	59	52
few	$\underline{82}$	$\underline{81}$	$\underline{100}$	$\underline{85}$	52
most	$\mathbf{7 5}$	$\underline{110}$	63	64	80

Table: Confusion matrices for qMN and iBOWIMG

Qualitative analysis

Figure: Correct/wrong cases wrt frequency of noun-property pair (Unc setting)

Discussion

- Our qMN model significantly outperforms the baseline in all three settings (around 8\% better)

Discussion

- Our qMN model significantly outperforms the baseline in all three settings (around 8\% better)
- Quantification cannot be handled by simply memorizing correlations (iBOWIMG fails)

Discussion

- Our qMN model significantly outperforms the baseline in all three settings (around 8\% better)
- Quantification cannot be handled by simply memorizing correlations (iBOWIMG fails)
- Proper understanding of both visual and linguistic input and their interaction is needed

Discussion

- Our qMN model significantly outperforms the baseline in all three settings (around 8\% better)
- Quantification cannot be handled by simply memorizing correlations (iBOWIMG fails)
- Proper understanding of both visual and linguistic input and their interaction is needed
- "Logical" quantifiers (no, all) are easier to learn than "proportional" ones (most and few).

Future research

- Experiment with more natural datasets (i.e. real scenes)

Future research

- Experiment with more natural datasets (i.e. real scenes)
- Collect human judgments on quantifiers' use to take into account pragmatics beyond "proportions"

Future research

- Experiment with more natural datasets (i.e. real scenes)
- Collect human judgments on quantifiers' use to take into account pragmatics beyond "proportions"
- Test "fuzzy" against "precise" quantification (quantifiers vs. exact cardinals)

Thank you!

("all" the authors)

